
FPGA Implementation of GZIP Compression and
Decompression for IDC Services

Jian Ouyang Hong Luo, Zilong Wang Jiazi Tian, Chenghui Liu and Kehua Sheng
System Group, Baidu Inc.

ouyangjian@baidu.com, tianjiazi@baidu.com, liuchenghui@baidu.com, shengkehua@baidu.com
Electronic Engineering Department, Tsinghua University

Beijing, China
hongluo@tsinghua.edu.cn, zilongwang@mails.tsinghua.edu.cn

Abstract—In the large scale data processing of Internet, data
compression and decompression is a very important technology
which can significantly improve the valid capacity of the disk and
the valid bandwidth of IO, which can reduce the costs of IDC and
accelerate application programs.

This paper describes a low-cost FPGA hardware architecture of
GZIP compression and decompression, which has been applied to
IDC services successfully. Depending on different applications,
the disk IO utilization has been improved by 300 to 500 percent,
and the programs are accelerated by 30% to 200%, while 1 to 3
CPU-core resources could be released.

Keywords- IDC; FPGA; GZIP;

I. INTRODUCTION

Data compression technology is widely used in the field of
Internet, databases and storage [1-2]. GZIP is the most widely
used compression algorithm, which has a good compression
ratio and compression/decompression bandwidth. For example,
both apache and IIS compress the web pages by GZIP to
improve the access response [3].

In traditional applications, software-based solutions are
widely used in data compression and decompression. However,
a large amount of CPU and memory resource is consumed in
the large-scale data compressing and decompressing. For
example, on the platform deploying a 2.66GHz CPU, the
compression bandwidth is 50MB/s, while the decompression
bandwidth is 200MB/s. Therefore, the effective transaction
capability is confined to the remaining CPU and memory
resource.

This paper proposed a GZIP hardware accelerator, which
can offload the CPU consumption, and significantly improve
the capacity of system transaction per second. Our innovative
hardware accelerator distinguishes itself from the software one
in the following aspects:

1. The FPGA accelerator uses two separate RAM blocks to
store and manage historical data, thus for concurrent operation,
while software implementation just uses linked lists.

2. In software implementation, the data is stored and read
sequentially. But in hardware implementation, we use 16
distributed and individually addressable RAMs to read data
simultaneously.

3. The hardware architecture can handle 4 matching search
simultaneously, while only one matching search can be
launched by the software implementation at the same time.

The rest of this paper is organized as follows. In Section II,
we first review GZIP algorithm and the software
implementation. In Section III, FPGA is applied in GZIP
compression and decompression. The computing results and
comparisons are made between software and hardware
implementation in Section IV. Section V shows the application
examples of this FPGA accelerator, and Section VI concludes
this paper.

II. REVIEW OF GZIP

GZIP compression is based on DEFLATE algorithm [4],
which consists of two parts: Lz77 [5] and Huffman coding [6].
Lz77 algorithm compresses the raw data by removing the
redundant parts. Huffman coding is to encode the results of
Lz77.

Software implementation of Lz77 algorithm is to find the
best match and thus eliminating redundant data string through
the “sliding window”, and a typical window size is 32KB. Such
a window should be traversed to find all occurrences of the
matching, thus the processing speed is very slow. Reducing the
size of the window (e.g. 16KB) could increase the speed, but
the compression ratio would be degraded.

Huffman coding in GZIP compression is the standard one.
Lz77’s output will be divided into two parts: matched length
part, and matched distance part, and these two parts will be
encoded separately.

III. FPGA IMPLEMENTATION

In IDC Data services, one machine handles multiple tasks
simultaneously, thus compression and decompression should
be task-level-parallelism. Therefore, we designed a hardware
board with four FPGA chips. As shown in Figure 1, these four
cyclone-III chips are connected to a bridge chip through PCI,
and the bridge chip communicates with the host through PCI-e
X4 interface. The photo of the FPGA board is shown as Figure
2. Each FPGA chip can be configured as a compression engine
or a decompression engine.

265

978-1-4244-8982-4/10/$26.00 ©2010 IEEE

Figure 1 the architecture of FPGA board

Figure 2 the FPGA board

A. FPGA-based GZIP compression
According to Section II, in GZIP compression algorithm,

the LZ77 encoding is the most critical part for both
compression ratio and performance. Thus, our FPGA-based
implementation focuses on efficient LZ77 matching search.

There are several difficulties for simultaneously handling
multiple matching searches on low-cost FPGA such as
ALTERA cyclone-III 80 series [7]:

1. The characters sharing the same hash value must be
taken out within a cycle, so a new storage structure should be
applied instead of the linked list.

2. Because of multiple read requests to access the historical
data window in one cycle, the new storage structure should
avoid the conflicts of read ports.

This paper presents an innovative architecture to solve the
problems, which can achieve two-time higher compression
bandwidth than the software implementation, with a neglect
loss of compression ratio.

1. Our hardware architecture uses two separate RAM
blocks to store and manage literal index in historical data
window instead of linked lists in software.

2. In software implementation, the data is stored in
sequence In hardware implementation, the historical data is
stored in 16 distributed and individually addressable RAMs,
and the data is stored and managed as “interleave”, which
reduce the read conflicts caused by data locality.

Figure 3: framework overview

3. Only one matching search can be issued by the software
implementation at the same time. The hardware architecture
can implement 4 matching search simultaneously, which can
significantly speed up the searching match processing.

As shown in Figure 3, lz77 hardware architecture is divided
into the following three modules:

1. Hash2_lookup: This module will calculate the hash
values of each literal, store and manage of the literals’ index
based on the hash value. In order to improve concurrency of
matching search, two literal indexes can be read each cycle, as
shown in Figure 4.

2. Lit_dist_ram: The distributed RAM module has been
used to store historical data in order to improve the
concurrency of read access. To realize full concurrency of
matching search, the hardware architecture described in this
paper made the following optimization to store historical data:

a. Each RAM can be individually addressed, and has two
independent read ports., In our architecture, the 16KB
historical data window uses 16 separate RAMs, thus it can
support 32 concurrent read accesses in each cycle. Distributed
storage structure is shown in Figure 5.

b. Historical data is stored in interleave way. The
experiment has showed the locality of the data, so most of the
read accesses will be centralized in the recent 1KB data block.
In order to prevent from the resource conflicts, the interleave-
way memory layout is applied to eliminate the data locality.

c. Data ports change from 1Byte into 4Byte, and each cycle
16-Byte of data will be read from the 4 RAM, which can
reduce the number of read requests to the original 1/16.

3. Search_match: As shown in Figure 6, this module
supports 4-way concurrent matching and searching in each
cycle, and it supports the lazy matching to improve the
compression ratio.

B. FPGA-based GZIP decompression
Huffman decoding in software implementation is based on

multi-level look-up table [8], which has the advantage of less
memory usage, but the parallelism of the algorithm is much
limited. In this paper, we propose a new hardware architecture

266

to explore more parallelism for GZIP decoding, and overall
architecture is shown as Figure 7.

Figure 4: storage architecture of literal address

Figure 5: distributed storage architecture

Figure 6: search match architecture

A "tables for each length" method to search 15 tables in
parallel way is proposed for hardware implementation.

Firstly, we use highly efficient memory layout method to
utilize ram resource as efficient as software implementation.
The longest length of Huffman code in GZIP is 15. As it is
standard Huffman coding [9], the code of the same length is
continuous, which means that the symbol of the same code
length can be stored in contiguous memory space. Huffman
table needs an efficient index. This paper uses the memory
layout to guarantees a minimum of storage resources and
provides the fastest lookup. In order to quickly search, the
initial address of each table needs to be saved in the register,
and as there are 15 tables, 15 registers are needed. The
Huffman table layout method is shown as Figure 8.

Secondly, this paper describes an efficient FPGA
implementation of "tables for each length" [7] Huffman
decoding algorithm, which achieves a full parallel Huffman
decoding. This implementation concurrently looks up multiple
tables (up to 15) in one cycle, calculates the code length of the
current input encoded data, decodes and outputs symbols. The
micro-architecture of Huffman decoding is shown as Figure 9.

In many applications, IO read requirement is much greater
than IO write, it means that the decompression bandwidth must
much higher than compression. In order to improve the
decompression bandwidth and task-level concurrency, we also
designed a multi-core decompression hardware architecture,
which integrates several decompression engines into one low-
cost FPGA chip. The 4 cores architecture is shown as Figure
10.

Figure 7: decompression architecture

Figure 8: Huffman table memory layout

267

Figure 9: Micro-structure of “tables for each length”

Figure 10: multi-core decompression

IV. RESULTS AND COMPARISONS

In this section, some data files including text and web pages
are used for evaluating our FPGA accelerator. In our
experiments, the single FPGA core runs at 132MHz, while the
compared CPU core is 2.66GHz.

Table 1 shows the comparisons between CPU compression
and FPGA compression. The results in the same row represent
the same data. The FPGA accelerator sacrifices a little
compression ratio in order to achieve much higher compression
bandwidth. Meanwhile, FPGA can achieve a compression
bandwidth up to 110MB/s. The adoption of FPGA accelerator
leads to on average 270% improvement of compression
bandwidth, while the maximum improvement is about 550%.

Table 2 shows the decompression bandwidth comparisons
between FPGA decompression engine and CPU engine in
different compression ratio. The FPGA can achieve up to
300MB/s bandwidth, and the maximum bandwidth gain is
about 58%, while the average improvement is 38%.

Table 1: software and hardware compression comparisons
CPU
Compression
Ratio (%)

CPU
Bandwidth
 (MB/s)

FPGA
Compression
Ratio (%)

FPGA
Bandwidth
 (MB/s)

1.58 84.695 2.37 110.704
4.90 58.182 5.04 110.778
11.20 36.635 14.52 82.488
25.11 29.193 27.10 85.543
31.38 10.304 34.74 62.748
35.43 26.573 35.06 62.531
36.17 9.643 38.76 62.523
72.47 9.462 81.54 61.291

Table 2: software and hardware decompression comparisons
Compression
Ratio (%)

CPU Bandwidth
(MB/s)

FPGA Bandwidth
(MB/s)

21.17 241.1 306.1
23.67 218.3 300.0
27.94 213.8 286.8
34.48 164.3 254.8
34.67 160.7 254.5
35.22 224.7 266.3

V. APPLICATION EXAMPLES

The hardware compression and decompression boards are
widely deployed in IDC. There are two kinds of practical
applications.

In Apache Web front end, we use hardware compression to
replace the software compression. The average response time is
decreased by 21%, and every 100 requests can save 7% of the
CPU consumption. The ultimate capability of signal node’s
transaction achieves one time improvement, and the network
bandwidth decreases to 30%.

In distributed large-scale data processing, with the use of
hardware compression and decompression, disk capacity
utilization is increased by three times without extra burden on
CPU, and the running speed of application layer is increased by
30% to 40%.

VI. CONCLUSION

FPGA accelerator of GZIP compression and decompression
could improve the disk and network utilization without extra
burden on CPU, so many applications can be benefited from
this FPGA accelerating solution. Our architecture is optimized
for low-cost FPGA, which is also efficient and can reduce the
budget of IDC significantly. At the same time, compared to
general CPU, FPGA has much lower power, which effectively
improves the energy utilization, and provides a feasible scheme
for Low Carbon Computing.

ACKNOWLEDGMENT

The authors would like to thank Xin Zhang, Fei Wang and
Huijun Tang for their important contributions for this work.

REFERENCES

[1] Jeff Dean, “Challenges in building large-scale information retrieval
system”, WSDM09.

[2] Ghemawat, Gobioff, and Leung, “Google file system”, SOSP 2003.
[3] http://httpd.apache.org/.
[4] RFC 1952 - GZIP file format specification version 4.3.
[5] Jacob Ziv and Abraham Lempel, “A Universal Algorithm for Sequential

Data Compression”, IEEE Transactions on Information Theory, 23(3),
pp. 337–343, May 1977.

[6] Michael Schindler, http://www.compressconsult.com/huffman/.
[7] http://www.altera.com/products/devices/cyclone3/cy3-index.jsp.
[8] Jean-loup Gailly and Mark Adler, http://www.gzip.org/.
[9] David Salomon, “Data Compression: The Complete Reference”, 3rd

edition.

268

